The Sultanate of Oman is among the Indian Ocean countries that are exposed to tsunami threat from at least two major subduction zones, namely Makran and Andaman Sumatra. During the 20 and 21 centuries two-earthquake events, the 1945 Makran and the 2004 Sumatra, have caused tsunami that reached/impacted the coast of Oman. The Mw8.1 earthquake event of 1945, occurred in Makran zone, has triggered a tsunami that was reported to affect the coast of Oman. The Mw9.2 Indian Ocean event of 2004 triggered a tsunami that was recorded in various tide-gauges stations of Oman with wave amplitude reaching ~ 1.7 m in the port of Salalah.

In this work, we present a probabilistic tsunami hazard assessment for the entire coast of Oman due to earthquake sources. The methodology includes the contribution of small and large sources and employs the probabilistic seismic hazard assessment, the tsunami numerical modeling, and statistical approaches in order to evaluate the likelihood that a certain level of tsunami threat is exceeded at a certain location of Oman coast within a certain period of time. The probability of exceeding a specific tsunami hazard level during a time return period is calculated using the Poisson distribution.

Probability hazard exceedance maps and hazard curves were derived for 100-, 250-, 500- and 1000-year period at the entire Oman coast. The hazard maps consist of computing the likelihood that tsunami waves exceed specific amplitude for the entire coast of Oman, and the hazard curves describe the variation of cumulative probabilities as function of wave amplitudes at some critical coastal points. We find that the probability that a maximum wave height exceeds 1 m somewhere along the coast of Oman reaches 60 %, 80 %, 100 %, and 100 % for 100-year, 250-year, 500-year and 1000-year return periods, respectively. These probability values decrease significantly along the coast of Oman when considering the exceedance threshold of 3 m.

Key Words: Tsunami; Probabilistic approach; Oman Coast