TWC Operations: Limitations and Challenges

Charles McCreery
NOAA Pacific Tsunami Warning Center

Laura Kong*
UNESCO/IOC – NOAA International Tsunami Information Center

* presenter
TWC LIMITATIONS

- **Why Is There Need to Know Limits?**
 - Helps Guide SOP Development
 - Helps Foster Realistic Expectations

- **Seismic:** Real-time Earthquake Source Characterization

- **Tsunami:** Detection, Forecasting (travel time, wave heights and periods)

- Alert Dissemination
Limitations of Seismic Analysis

- Speed of Initial Analysis Depends On
 - Density of Seismic Network
 - Type and Quality of Seismic Stations
 - Speed of Data Transmission
 - Speed of Seismic Processing
 - Confidence in Result

- Elapsed Time to Initial EQ Parameters
 - 2-5 min with Regional Network
 - 5-15 min with Global Network
Accuracy of Hypocenter (Location / Depth)

- Bias - nearby stations only on one side
- Latitude, Longitude error not so critical
- But depth critical to tsunamigenesis
- Depth constraint poor (especially if shallow)
- Hypocenter is only the point of initial rupture
- Tsunamigenic earthquakes have large source
Limitations of Seismic Analysis

- **Accuracy of Earthquake Magnitude**
 - Rapid methods underestimate great events
 - Magnitude is a very limited representation of earthquake size
 - No magic threshold for tsunamigenesis
Limitations of Seismic Analysis

- **Anomalous Events**
 - Slow earthquakes
 - Traditional magnitudes underestimate
 - Enhanced tsunami potential
 - Landslide tsunamis
 - Smaller earthquake triggers landslide
 - Landslide generates tsunami
 - 1998 Papua New Guinea, Mw=7, >2000 casualties
 - Splay faults
 - Splay fault rupture accompanies main rupture
 - Tsunami generated closer to shore
Slow Earthquake: 2006 Java Tsunami

- Little apparent ground motion
- Large surf, so no clues in ocean behavior
- Death toll 730
Limitations of Seismic Analysis

- **Finite Faults**
 - Fault rupture over large area
 - Amount of slip varies along fault
 - Depth of ruptured fault varies
 - Tsunamigenesis varies
 - Important near the earthquake
 - Not so important for distant tsunami
 - Finite fault analysis too slow for local warning
Fault areas of some famous earthquakes

<table>
<thead>
<tr>
<th>Year</th>
<th>Location</th>
<th>Moment (10^{27} dyne-cm)</th>
<th>Mw</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>Chile</td>
<td>2000</td>
<td>9.5</td>
</tr>
<tr>
<td>1964</td>
<td>Alaska</td>
<td>800</td>
<td>9.2</td>
</tr>
<tr>
<td>1906</td>
<td>San Francisco</td>
<td>10 15</td>
<td>7.9</td>
</tr>
<tr>
<td>1946</td>
<td>Nankai</td>
<td>15 15</td>
<td>8.1</td>
</tr>
<tr>
<td>1944</td>
<td>Tonankai</td>
<td>10 15</td>
<td>8.1</td>
</tr>
<tr>
<td>2003</td>
<td>Tokachi-oki</td>
<td>9</td>
<td>7.9</td>
</tr>
<tr>
<td>1995</td>
<td>Kobe</td>
<td>0.3</td>
<td>6.9</td>
</tr>
</tbody>
</table>

2004 Sumatra
400×10^{27} dyne-cm
Mw 9.3

from James Mori, DPRI
Complicated Slip Distributions

1999 Chi-Chi, Taiwan Earthquake from James Mori, DPRI
Sea Level Measurements are Critical for:

- Tsunami Detection (Yes or No)
- Tsunami Measurement (Arrival Time, Amplitude, Period, Duration)
- Constraining/Tuning Tsunami Forecast
Limitations of Tsunami Detection

- **Speed of Sea Level Measurements**
 - Tsunami must travel to gauge
 - Depends upon density of gauge network
 - 15 min to >1 hr typical to first gauge
 - Tsunami wave must pass gauge
 - Wave periods are 5 to 60 min
 - Need at least ¼ of wave
 - Tsunami is a series of waves
 - Maximum may not be first wave
 - Gauge must transmit data
 - Typically every 5-15 min
Limitations of Tsunami Detection

- **Type of Sea Level Measurements**
 - **Coastal Gauge**
 - Most common
 - Signal highly modified by coastal effects
 - May be destroyed by large tsunami
 - **Deep Ocean Gauge**
 - Less common
 - Most expensive
 - Pure tsunami signal to constrain forecast
Limitations of Tsunami Forecasting

- **Estimated Arrival Time Forecast**
 - Based on initial seismic analysis
 - Point source or assumed finite fault

- **Initial Threat Level Forecast**
 - Based only on initial seismic analysis and general geophysical/oceanographic constraints
 - Least accurate

- **Sea Level Constrained Forecast**
 - Too late for local tsunami
 - Deep ocean measurements best constraint
 - More accurate
Tsunami Travel Times from Small Source
Tsunami Travel Times from Large Source
Limitations and Challenges (1)

- Real-time forecasting is of limited use for local warning. Self-evacuation might be the only way to avoid the loss of lives.

- Real-time forecast is only as good as the EQ parameters. Initial EQ mag can be easily off by 0.2 or more, resulting in a factor of two difference in wave amplitude.

- Method used for determining coastal forecast (Green’s law) amplitude can underestimate harbor resonances and overestimate for small islands. The extent of inundation/flooding cannot be determined from the RIFT forecast.
Limitations and Challenges (2)

- How to make accurate forecast for coastal regions with a wide continental shelf (Thailand, Australia, etc.). Ultra fine resolution might not be feasible in real time. Couple with inundation models or using nested grids to refine coastal forecast?

- Real-time DART inversion is not yet available for RIFT but it is desirable.

- Landslide model (currently simply slump model)

- Asteroid Tsunami

- Meteorological tsunamis
Limitations of Tsunami Forecasting

- **Historical Comparisons**
 - Historical record is very short and incomplete in most areas
 - No repeat events
 - May be okay to identify coastal sensitivities
Limitations of Messages / Dissemination

- **Message Content**
 - Should be simple and to the point
 - Should contain key information
 - Situation Evaluation and Summary
 - Seismic Parameters
 - Predicted Threat Level
 - Estimated Tsunami Wave Arrival Times
 - Key Tsunami Wave Measurements
 - Recommended Actions
 - Tied to SOPs and trigger SOP actions
Limitations of Messages / Dissemination

- **Message Dissemination**
 - Disseminate by reliable methods
 - After initial warning, commercial phone lines may go down so no voice or fax
 - Other comms may be out due to earthquake damage
 - Disseminate to responsible 24x7 offices
 - Messages must be recognized and acted upon immediately
Thank You

Charles McCreery
NOAA Pacific Tsunami Warning Center

Laura Kong*
UNESCO/IOC – NOAA International Tsunami Information Center

* presenter