Scientific meeting of experts for coordinated scenario analysis of future tsunami events and hazard mitigation schemes for the South China sea region

Meeting of Experts
Xiamen, China
16 - 18 November 2015
Scientific meeting of experts for coordinated scenario analysis of future tsunami events and hazard mitigation schemes for the South China sea region

Meeting of Experts
Xiamen, China
16 - 18 November 2015
The authors are responsible for the choice and the presentation of the facts contained in this publication and for the opinions expressed therein, which are not necessarily those of UNESCO and do not commit the Organization. Every care has been taken to ensure the accuracy of information in this publication. However neither UNESCO, nor the authors will be liable for any loss or damaged suffered as a result of reliance on this information, or through directly or indirectly applying it.

The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariats of UNESCO and IOC concerning the legal status of any country or territory, or its authorities, or concerning the delimitation of the frontiers of any country or territory.

For bibliographic purposes this document should be cited as follows:

TABLE OF CONTENTS

EXECUTIVE SUMMARY ...(ii)

1. **BACKGROUND AND OBJECTIVES**...1

2. **SEISMIC ZONES IN THE SOUTH CHINA SEA AND POSSIBLE SOURCES OF TSUNAMI AFFECTING THE SOUTH CHINA SEA REGION**...2

3. **PARAMETERS FOR OTHER REGIONAL SOURCES**..3

4. **RECOMMENDATIONS ON OTHER CONSIDERATIONS FOR TSUNAMI MODELLING** ...4

5. **PARAMETERS FOR EARTHQUAKE AND TSUNAMI MODELLING FOR THE PHILIPPINES TRENCH**..5

ANNEXES

I. **AGENDA**

II. **BIBLIOGRAPHY AND REFERENCES**

III. **LIST OF PARTICIPANTS**

IV. **LIST OF ACRONYMS**
Executive Summary

The South China Sea region, which covers the South China Sea and its adjoining basins including Sulu Sea and Celebes Sea, is identified as one of the most vulnerable regions to major tsunamigenic earthquakes due to the high seismicity of the Manila Trench, Cotabato and Negros Trench and Sulawesi Trench. According to historical records, a number of devastating tsunamis have occurred in the region.

To tackle tsunami risk in the region, the international community has launched a coordinated plan of action. The Twenty-third Session of the Intergovernmental Coordination Group for the Pacific Tsunami Warning and Mitigation System (ICG/PTWS-23, 16-18 February 2009, Samoa) formed a Working Group on Tsunami Warning and Mitigation System in the region to, among other functions, promote and facilitate tsunami hazard and risk studies in the region.

During this workshop the major topics for discussion were paleoseismology and historic events in the South China Sea region and Philippines Trench, seismic studies and potential tsunamigenic sources in the South China Sea region and technical/scientific development of tsunami modelling for the South China Sea region, including key parameters.

The workshop resulted in a better understanding of the tsunami hazard and risk in the South China Sea region, which would be useful for the planning for the establishment of the sub-regional Tsunami advisory centre, as well as allow Member States to better understand their level of tsunami exposure.

Based on previous reports of earthquake sources, the following are identified as possible generators of tsunami events, capable of generating surface-rupturing events (>M6.5) that may generate and propagate tsunami waves within the South China Sea region and affect the countries within:

Regional Source: Manila Trench, Negros Trench, Sulu Trench, Cotabato Trench, Sulawesi Trench, Ryukyu Trench

Local Source: 1781-82 Taiwan Tsunami Source, Aglubang River Fault in Mindoro Island, Chinese Mainland Coastal Faults

Transoceanic: Pacific Sources (Yap, Chile)

The participants further recommended:

- A search for tsunami deposits along the shores of the South China Sea should be initiated. This should be coordinated on a regional level by a group of experts, to be identified.

- A baseline bathymetric database be developed for all modellers to use. 30 arcsecs in deep water, 500m + interpolation techniques on the continental shelf. The common shared database should be derived from publicly available data, where available.

- There is a need to look at historical literature to find ancient records of tsunamis

- The SCS-WG should look at operational capability gaps in Member States and find ways of filing them.

- NOAA/PMEL is asked to integrate Negros, Sulu, Cotabatos y Sulawesi in ComMIT/MOST
1. BACKGROUND AND OBJECTIVES

The South China Sea region, which covers the South China Sea and its adjoining basins including Sulu Sea and Celebes Sea, is identified as one of the most vulnerable regions to major tsunamigenic earthquakes due to the high seismicity of the Manila Trench, Cotabato and Negros Trench and Sulawesi Trench. According to historical records, a number of devastating tsunamis have occurred in the region. For example, the tsunami which hit Keelung in 1867 is believed to have resulted in the loss of several hundred lives. More recently, the tsunami generated by the M8.1 earthquake which hit Moro Gulf of the Celebes Sea in 1976 resulted in over 8,000 dead or missing, 10,000 injured and 90,000 homeless. The recent Mw 7.0 earthquake in 2006 off Taiwan once again raised attention and awareness of tsunami hazard of the region.

To tackle tsunami risk in the region, the international community has launched a coordinated plan of action. The Twenty-third Session of the Intergovernmental Coordination Group for the Pacific Tsunami Warning and Mitigation System (ICG/PTWS-23, 16-18 February 2009, Samoa) formed a Working Group on Tsunami Warning and Mitigation System in the region to, among other functions, promote and facilitate tsunami hazard and risk studies in the region.

There are already a significant number of studies on the tectonic, seismicity, historical earthquakes, tsunami records as well as tsunami risk assessments of the South China Sea region with results published in peer-reviewed journals. The results of those studies will form a good basis for further tsunami hazard and risk assessment in the region.

The historical tsunami events discussed above had mainly local impacts and there is very little historical information on events affecting a large region of the South China Sea. Considering these information gaps, some relevant questions on tsunami hazard in the South China Sea region are:

- Is the Manila Trench the only structure capable of producing a South China Sea wide tsunami?
- What is a comprehensive list of possible tsunami sources in the South China Sea region (local, regional, distant)?
- Are any sources outside the region a potential hazard for the South China Sea region?
- How large an earthquake can be produced by the Manila Trench and other potential sources within the South China Sea region?
- What is the return period for Manila Trench and other main source events?

In addition to the listed topics, there is evidence of past/potential submarine landslides in the South China Sea region, especially in the relatively steep slope transition zones from continental shelf to deep South China Sea basin, e.g., those in Northern South China Sea and offshore Vietnam among other areas (ref. Huang et al., 2010; Sun et al., 2014; Su et al., 2015; Wu et al.). These sources may be able to pose significant tsunami threat to the surrounding areas, especially to those within their close proximity.

In view of the large volume of knowledge in the studies discussed above, and the diversity of some of the study results, the IOC organized a three-days scientific meeting of relevant experts to review historical records, discuss the most likely sources and probability of occurrence of earthquakes and tsunamis for coordinated scenario analysis of future events and hazard mitigation schemes for the South China Sea region.
The workshop resulted in a better understanding of the tsunami hazard and risk in the South China Sea region, which would be useful for the planning for the establishment of the sub-regional Tsunami advisory centre, as well as allow Member States to better understand their level of tsunami exposure.

The major topics for discussion at the workshop were paleoseismology and historic events in the South China Sea region and Philippines Trench, seismic studies and potential tsunamigenic sources in the South China Sea region and technical/scientific development of tsunami modelling for the South China Sea region, including key parameters.

More information about the meeting, including the presentations is available from: http://www.ioc-tsunami.org/index.php?option=com_oe&task=viewEventRecord&eventID=1707

2. SEISMIC ZONES IN THE SOUTH CHINA SEA AND POSSIBLE SOURCES OF TSUNAMI AFFECTING THE SOUTH CHINA SEA REGION

The following image (Image 1) composed by Dr. Ishmael Narag shows the seismic zones in the South China Sea.

![Seismic Zones in The Study Area](image)

Based on previous reports of earthquake sources, the following are identified as possible generators of tsunami events, capable of generating surface-rupturing events (>M6.5) that may generate and propagate tsunami waves within the South China Sea region and affect the countries within.

Regional Source

- Manila Trench
- Negros Trench
- Sulu Trench
Regional earthquake sources are capable of generating tsunamis affecting coastal areas with waves greater than 0.3 m in at least two countries. Local sources are those that would only affect one country while transoceanic sources may generate mega-thrust events that may spawn large Pacific tsunami waves that may enter and leak into the South China Sea region (e.g. 1960 Chilean tsunami).

3. PARAMETERS FOR OTHER REGIONAL SOURCES

There was consensus in the group that the current status of knowledge for the below listed potential tsunamigenic sources (Table 1) is very limited. The group does not caution the proposed Mmax for its use for tsunami warning or for hazard assessment purposes.

<table>
<thead>
<tr>
<th>Source</th>
<th>Length (km)</th>
<th>Width (km)</th>
<th>Area (km²)</th>
<th>Coupling Rate (mm/yr)</th>
<th>Mw (Wells&Coppersmith)</th>
<th>Mmax (manual)</th>
<th>Mmax (Observed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negros</td>
<td>314</td>
<td>52</td>
<td>16328</td>
<td>0.5</td>
<td>19,1</td>
<td>8,1</td>
<td>8,3</td>
</tr>
<tr>
<td>Cotabato</td>
<td>250</td>
<td>52</td>
<td>13000</td>
<td>0.5</td>
<td>18,5</td>
<td>8,0</td>
<td>8,3</td>
</tr>
<tr>
<td>Sulawesi</td>
<td>300</td>
<td>62</td>
<td>18600</td>
<td>0.5</td>
<td>35</td>
<td>8,2</td>
<td>8,8</td>
</tr>
<tr>
<td>Sulu</td>
<td>445</td>
<td>100</td>
<td>44500</td>
<td>0.5</td>
<td>18,2</td>
<td>8,5</td>
<td>8,7</td>
</tr>
<tr>
<td>Molucca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taiwan Strait</td>
<td>127</td>
<td>63</td>
<td>8001</td>
<td></td>
<td>7,8</td>
<td>8,1</td>
<td>?</td>
</tr>
</tbody>
</table>

Table 1. Parameters for South China Sea tsunami sources other than the Philippines Trench
4. RECOMMENDATIONS ON OTHER CONSIDERATIONS FOR TSUNAMI MODELLING

EQ Parameters:

- The SCS modelling region should be different from the warning region. The modelling region should be larger than the warning region to cover features outside the domain and sources outside the domain.

- GEM has already established earthquake source parameters. The SCS-WG should re-examine these parameters including slip heterogeneity and report back to GEM.

Landslides:

- It is recognised that historically there have been landslides in several regions but the challenge is how to identify the regions most susceptible to landslides. Landslides are localised events that can generate large tsunamis. We need to identify potential landslides regions by examining pertinent databases. However for the SCS early warning system, landslide generated tsunamis is primarily a local concern.

Tsunami Deposits:

- A search for tsunami deposits along the shores of the SCS should be initiated. This should be coordinated on a regional level by a group of experts, to be identified.

- Need to also improve the modelling of the processes for transporting sediment and boulders to the deposition zone and processes for reworking of sediments.

Tsunami Modelling and Bathymetry:

- Grid of 30 arc seconds in open ocean is adequate but near the coastline higher resolution is required.

- On the continental shelf, 500m or finer spatial resolution is recommended.

- Recommended that a baseline bathymetric database be developed for all modellers to use. 30 arcsecs in deep water, 500m + interpolation techniques on the continental shelf. The common shared database should be derived from publicly available data, where available.

- Frictional coefficient will be model dependent. Recommended that it should be kept as small as practical

- Tidal variations can be decoupled from the propagation model but needs to be considered for inundation models

- Numerical dispersion must be checked and minimised, whatever model is used.
• Linear-Shallow Water models to be used for propagation in deep ocean. In the Near shore region nonlinear shallow water equation models are suitable for estimating runup heights and inundation area. However, for calculating tsunami forces on structures and sediment transport non-Linear, non-hydrostatic and/or 3D models should be used.

• All models should be validated with established benchmark procedures.

Other recommendations:
- There is a need to look at historical literature to find ancient records of tsunamis
- The SCS-WG should look at operational capability gaps in Member States and find ways of filling them.
- NOAA/PMEL is asked to integrate Negros, Sulu, Cotabatos y Sulawesi in ComMIT/MOST

5. PARAMETERS FOR EARTHQUAKE AND TSUNAMI MODELLING FOR THE PHILIPPINES TRENCH

In light of the abundant literature and the importance of this potential tsunamigenic zone in terms of risk for the entire basin, the group concentrated in comparing the table of parameters in use by the model ComMIT/MOST as provided by Dr. Yong Wei and the table provided by ZHOU Bengang, HE Honglin, AN Yanfen, et al. “Report of the evaluation of the seismotectonic background and source parameters in the Ryukyu Trench and Manila Trench. Institute of Geology, Institute of Geophysics, Institute of Earthquake Science, China Earthquake Administration, 2011. (in Chinese) hereunder as Table 2.

<table>
<thead>
<tr>
<th>Manila</th>
<th>location</th>
<th>length (km)</th>
<th>width (km)</th>
<th>depth (km)</th>
<th>strike (°)</th>
<th>dip (°)</th>
<th>rake (°)</th>
<th>M_u</th>
<th>slip (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM 1</td>
<td>longitude: 119°51′, latitude: 21°58′</td>
<td>210</td>
<td>82</td>
<td>20</td>
<td>350</td>
<td>14</td>
<td>110</td>
<td>8.2</td>
<td>2.94</td>
</tr>
<tr>
<td>RM 2</td>
<td>longitude: 120°21′, latitude: 20°06′</td>
<td>310</td>
<td>109</td>
<td>20</td>
<td>29</td>
<td>20</td>
<td>110</td>
<td>8.6</td>
<td>5.3</td>
</tr>
<tr>
<td>RM 3</td>
<td>longitude: 118°56′, latitude: 17°40′</td>
<td>135</td>
<td>66</td>
<td>20</td>
<td>3</td>
<td>20</td>
<td>90</td>
<td>7.9</td>
<td>1.89</td>
</tr>
<tr>
<td>RM 4</td>
<td>longitude: 119°09′, latitude: 16°24′</td>
<td>140</td>
<td>66</td>
<td>20</td>
<td>351</td>
<td>20</td>
<td>90</td>
<td>7.9</td>
<td>1.89</td>
</tr>
<tr>
<td>RM 5</td>
<td>longitude: 119°05′, latitude: 15°12′</td>
<td>166</td>
<td>71</td>
<td>20</td>
<td>353</td>
<td>30</td>
<td>50</td>
<td>8</td>
<td>2.19</td>
</tr>
<tr>
<td>RM 6</td>
<td>longitude: 119°16′, latitude: 13°44′</td>
<td>142</td>
<td>66</td>
<td>20</td>
<td>308</td>
<td>30</td>
<td>50</td>
<td>7.9</td>
<td>1.89</td>
</tr>
</tbody>
</table>
Table 2: ZHOU Bengang et al, 2011, Institute of Geology, Institute of Geophysics, Institute of Earthquake Science, China Earthquake Administration

The group agreed that Table 2 is representative of the current knowledge about the geology and tectonics of the region but did not agree on endorsing the two scenarios identified in Table 2 as RM (2+3) and RM (4+5+6).

The group also looked at the information compiled by a group of seismologists of the University of Taiwan, China as indicated in Image 2 below which identifies 4 potential tsunami scenarios (indicated as segments 2, 3, 4, and 5).

Image 2. Caption to be provided by Dr WU

The seismologist that developed the scenarios described in Image 2 considered the following elements in defining the two key scenarios:

Length: We consider the topography and geological conditions of trenches and faults, and determine the maximum length based on the uniformity of the geological structure.

Width: Reference to the world-class mega-earthquakes, the width is determined.

Mw and slip: After obtaining the length and width of the mega-thrust, the area can be determined. Based on the seismic scaling law (Yen and Ma, 2011), the earthquake magnitude (Mw) and slip can be determined.
Adopting the half-space homogenous elastic mode (Okada, 1986) to estimate the vertical displacement of the seafloor deformation and the tsunami initial profile.

The group agreed that the considerations and information that supports the parameters indicated in Image 2 are also reasonable in light of the current knowledge of the geology and tectonics of the region but did not agree on endorsing the four scenarios identified in Image 2 as segments 2, 3, 4, and 5.
ANNEX I

AGENDA

<table>
<thead>
<tr>
<th>DAY 1</th>
<th>16 NOVEMBER 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00-09:00</td>
<td>REGISTRATION</td>
</tr>
<tr>
<td>09:00-10:00</td>
<td>OPENING</td>
</tr>
<tr>
<td>10:00-10:30</td>
<td>COFFEE BREAK</td>
</tr>
<tr>
<td>10:30-12:30</td>
<td>1. Paleoseismology and historic events in the South China Sea region and Philippines Trench [Moderator: Ishmael C. NARAG]</td>
</tr>
<tr>
<td>10:30-11:00</td>
<td>1.1. Seismicity characteristics in the South China Sea region and its tectonic significances, Zhiguo Xu</td>
</tr>
<tr>
<td>11:00-11:30</td>
<td>1.2. Tsunami events recorded in China historical document and the field investigation of possible paleo-tsunami in South China Sea, Honglin He & Shi Feng</td>
</tr>
<tr>
<td>11:30-12:00</td>
<td>1.3. What caused the mysterious eighteenth century tsunami that struck the southwest Taiwan coast? Linlin Li, Adam D. Switzer, Yu Wang, Robert Weiss, Qiang Qiu, Chung-Han Chan, and Paul Tapponnier</td>
</tr>
<tr>
<td>12:00-12:30</td>
<td>1.4. Realistic scenarios for tsunami risk in the South China Sea, Emile Okal</td>
</tr>
<tr>
<td>12:30-13:30</td>
<td>LUNCH</td>
</tr>
<tr>
<td>13:30-15:00</td>
<td>2. Seismic studies and potential tsunamigenic sources in the South China Sea region [Moderator: Dr. Ken Gledhill]</td>
</tr>
<tr>
<td>13:30-14:00</td>
<td>2.1. GEM global faulted earth database, Ken Gledhill (on behalf of GEM)</td>
</tr>
<tr>
<td>14:00-14:30</td>
<td>2.2. Probabilistic Tsunami Hazard Assessment in the SCS region, Ye Yuan, Hongwei Li</td>
</tr>
<tr>
<td>14:30-15:00</td>
<td>2.3. Estimation of hazard parameters for potential tsunamigenic sources in the South China Sea region, Nguyen Hong Phuong</td>
</tr>
<tr>
<td>15:00-15:30</td>
<td>COFFEE BREAK</td>
</tr>
<tr>
<td>15:30-17:00</td>
<td>3. Technical/Scientific development of tsunami modelling for the South China Sea region, including key parameters, [Moderator: Dr. Philip Liu]</td>
</tr>
<tr>
<td>15:30-16:00</td>
<td>3.1. Probabilistic tsunami hazard zonation in the coastal area of China, Ruizhi Wen & Yefei Ren</td>
</tr>
<tr>
<td>16:00-16:30</td>
<td>3.2. Dispersion effects on tsunami propagation in the South China Sea region, Hua Liu</td>
</tr>
<tr>
<td>16:30-17:00</td>
<td>3.3. Recent research results on tsunami hazard associated with the scenario earthquakes along the Manila trench, Philip L-F. Liu, Tso-Ren Wu</td>
</tr>
<tr>
<td>17:00-17:30</td>
<td>3.4. Modeling of Tsunami Generation, Propagation, and Inundation with a Non-hydrostatic Model, Kwok Fai Cheung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DAY 2</th>
<th>17 NOVEMBER 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00-09:30</td>
<td>3.5. American Society of Civil Engineers approach for the probabilistic tsunami assessment and implications for the South China Sea, Yong Wei</td>
</tr>
<tr>
<td>09:30-10:00</td>
<td>3.6. Real time tsunami warning skills in the South China Sea region, Fujiang Yu, Peitao Wang</td>
</tr>
<tr>
<td>10:00-10:30</td>
<td>3.7. Effect of fault slip heterogeneity on the coastal impact of tsunami and</td>
</tr>
<tr>
<td>Time</td>
<td>Activity</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>10:30-11:00</td>
<td>3.8. Reviewing tsunami fragility curves and its application for the South China Sea countries, Anawat Suppasri</td>
</tr>
<tr>
<td>11:00-11:30</td>
<td>COFFEE BREAK</td>
</tr>
<tr>
<td>11:30-12:30</td>
<td>4. Break-out Groups – each group discuss the three subjects</td>
</tr>
<tr>
<td>11:30-12:00</td>
<td>Round-up of the three sessions and general guidance discussion chaired by moderators before breaking groups start working [Ishmael C. NARAG, Dr. Ken Gledhill, Dr. Philip Liu]</td>
</tr>
<tr>
<td>12:00-12:30</td>
<td>4.1. Earthquake based scenarios – key parameters and geometry of the faults</td>
</tr>
<tr>
<td></td>
<td>4.2. Land-slide tsunami potential – coastal areas to be prioritised for local preparedness</td>
</tr>
<tr>
<td></td>
<td>4.3. Tsunami modelling – datasets inventory for topography and bathymetry, priority gaps</td>
</tr>
<tr>
<td>12:30-13:30</td>
<td>LUNCH</td>
</tr>
<tr>
<td>13:30-15:00</td>
<td>Continued Break-out Groups – each group discuss the three subjects</td>
</tr>
<tr>
<td>15:00-16:00</td>
<td>COFFEE BREAK</td>
</tr>
<tr>
<td>16:00-17:00</td>
<td>Summary session – breakout groups reports & recommendations</td>
</tr>
<tr>
<td>DAY 3</td>
<td>18 NOVEMBER 2015</td>
</tr>
<tr>
<td>09:00-10:00</td>
<td>Summary session – breakout groups reports and recommendations</td>
</tr>
<tr>
<td>10:00-11:00</td>
<td>COFFEE BREAK</td>
</tr>
<tr>
<td>11:00-12:30</td>
<td>FINAL RECOMMENDATIONS AND CLOSING</td>
</tr>
</tbody>
</table>
ANNEX II

BIBLIOGRAPHY AND REFERENCES

http://www.globalquakemodel.org/what/seismic-hazard/historical-catalogue/

http://services.bepress.com/eci/geohazards/28

http://earthquake.usgs.gov/earthquakes/

http://www.ngdc.noaa.gov/hazard/earthqk.shtml

[22] TLN. Tsunami Laboratory Novosibirsk.
http://tsun.ssc.ru/On_line_Cat.htm

ANNEX III

LIST OF PARTICIPANTS

Mr Bartolome Caparas BAUTISTA
Deputy Director
Philippine Institute of Volcanology and Seismology
CP Garcia Avenue, University of the Philippines Campus Quezon City
1101
Philippines
Email: bart_bautista@yahoo.com

Dr Kwok Fai CHEUNG
Professor
Department of Ocean and Resources Engineering, University of Hawaii
School of Ocean and Earth Science and Technology
University of Hawai‘i at Manoa
2540 Dole Street, Holmes Hall 402
Honolulu Hawaii HI 96822
United States
Email: cheung@hawaii.edu

Dr Shi FENG
Associate Professor
Institute of Geology, China Earthquake Administration
No.19 Beitucheng West Road, Chaoyang District
100029 Beijing
China
Tel: 010-82998382
Fax: 010-62010846
Email: shifeng@mail.iggcas.ac.cn

Dr. Ken GLEDHILL
GeoNet Project Director
GNS Science – Te Pu Ao
Lower Hutt P.O. Box 30-368
New Zealand
Tel: 64-4-5704848
Fax: 64-4-5704600
Email: K.Gledhill@gns.cri.nz

Dr. Nguyen HONG PHUONG
Professor, Deputy Director
Vietnam Earthquake Information and Tsunami Warning Center, Institute of Geophysics, Vietnam Academy of Science and Technology
18 Hoang Quoc Viet street, Cau Giay District
Hanoi
Vietnam
Tel: (84-4) 39940320
Fax: (84-4) 37914593
Email: phuong.dongdat@gmail.com

Dr. Nguyen HONG PHUONG
Professor, Deputy Director
Vietnam Earthquake Information and Tsunami Warning Center, Institute of Geophysics, Vietnam Academy of Science and Technology
18 Hoang Quoc Viet street, Cau Giay District
Hanoi
Vietnam
Tel: (84-4) 39940320
Fax: (84-4) 37914593
Email: phuong.dongdat@gmail.com

Dr Linlin LI
Fellow Research
Earth Observatory of Singapore
Nanyang Technological University, 50 Nanyang Avenue
Singapore 639798
Singapore
Email: llli@ntu.edu.sg

Hua LIU
Professor, Director
School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University
800 Dong Chuan Road
200240 Minhang
Shanghai
China
Tel: +86-21-34204295
Fax: +86-21-34204472
Email: hliu@sjtu.edu.cn

Dr Philip LIU
Class of 1912 Professor of Engineering
Cornell University
School of Civil & Environmental Engineering
220 Hollister Hall
Ithaca New York NY 14853
United States
Email: pll3@cornell.edu

Mr Hing-Yim MOK
Senior Scientific Officer
Hong Kong Observatory
134A Nathan Road Kowloon
China
Tel: +(852) 2926 8451
Fax: +(852) 2311 9448
Email: hymok@hko.gov.hk

Ishmael C. NARAG
Supervising Science Research Specialist / Officer-in-Charge
Philippine Institute of Volcanology and Seismology
CP Garcia Avenue, University of the Philippines Campus Quezon City
1101 Philippines
Tel: +632 426 1468 loc. 124
Fax: +632 927 1087
Email: ishma01@yahoo.com

Prof. Emile OKAL
Dept. of Geological Sciences
Northwestern University
Evanston, IL 60208 USA
United States
Tel: +1-847-491-3238
Fax: +1-847-491-8060
Email: emile@earth.northwestern.edu

Dr Yefei REN
Assistant Researcher, Division of Engineering Seismology
Institute of Engineering Mechanics, China Earthquake Administration
No.29 Xuefu Road
150080 Harbin
Heilongjiang
China
Email: renyefei@gmail.com

Dr Anawat SUPPASRI
Associate Professor
International Research Institute of Disaster Science
Tohoku University
Sendai
Japan
Email: suppasri@irides.tohoku.ac.jp

Dr Vasily TITOV
Director
NOAA Center for Tsunami Research - Pacific Marine Environmental Laboratory
7600 Sand Point Way NE, Bldg 3
Seattle Washington WA 98115
United States
Tel: +1 (206) 526 4536
Email: vasily.titov@noaa.gov

Dr. Xiaoming WANG
GNS Science
Principal Location
1 Fairway Drive
Avalon 5010
Lower Hutt
New Zealand
Email: x.wang@gns.cri.nz

Dr Yong WEI
Research Scientist
Pacific Marine Environmental Laboratory (PMEL)
7600 Sand Point Way NE
Seattle WA 98115
United States
Email: yong.wei@noaa.gov

Dr Ruizhi WEN
Institute of Engineering Mechanics, China Earthquake Administration
No.29 Xuefu Road
150080 Harbin
Heilongjiang
China
Email: ruizhi@iem.ac.cn

Dr. Tso-Ren WU
Professor
National Central University, Taiwan, China
China
Tel: +886-3-4227151#65687
Email: tsoren@ncu.edu.tw

Mr. Zhiguo XU
National Marine Environmental Forecasting Center / State Oceanic Administration
No.8 Dahuisi Road, Haidian District
100081 Beijing
Mr. Fujiang YU
Deputy Director
National Marine Environmental
Forecasting Center / State Oceanic
Administration
National Marine Environmental
Forecasting Center / State Oceanic
Administration
100081 Beijing
China
Tel: +86-10 62105732
Fax: +86-10 62173620
Email: yufj@nmefc.gov.cn

Dr. Ye YUAN
Director of Tsunami Warning Division
National Marine Environmental
Forecasting Center / State Oceanic
Administration
No.8 Dahuisi Road, Haidian District
100081 Beijing
China
Tel: +86-10-62105791

Email: yuanye@nmefc.gov.cn

UNESCO/IOC Secretariat

Mr Bernardo ALIAGA
Programme Specialist, Tsunami Unit
Intergovernmental Oceanographic Commission of UNESCO
7 Place de Fontenoy
75732 Paris Cedex 07, France
France
Tel: +33 1 45 68 39 80
Fax: +33 1 45 68 50 10
Email: b.aliaga@unesco.org

Mr Tony ELLIOTT
Head of ICG/IOTWS Secretariat, Senior Programme Specialist
Intergovernmental Oceanographic Commission of UNESCO
IOC/UNESCO Perth Programme Office c/o Bureau of Meteorology
PO Box 1370, West Perth
Level 3, 1 Ord Street
Perth WA 6872
Australia
Tel: +61 8 9226 0191
Fax: +61 8 9263 2261
Email: t.elliott@unesco.org
ANNEX IV

LIST OF ACRONYMS

Mw Moment magnitude