TIDE TOOL: SOFTWARE TO ANALYZE GTS SEA-LEVEL DATA

Stuart A. Weinstein¹, Laura S.L. Kong², Dailin Wang¹
and Nathan C. Becker¹
¹ Pacific Tsunami Warning Center, NOAA/NWS, USA
² International Tsunami Information Center/UNESCO-NOAA, USA
GTS – Global Telecommunications Service:
Maintained by the WMO and is comprised of a network of surface and satellite based telecommunications links and centers. It is a system for the global exchange of meteorological, climatic, seismic and other data to support multipurpose early warning and forecast systems*.

The TWCs (Tsunami Warning Centers) rely heavily on the GTS to supply sea-level data in near real time from ~550 sea-level stations world wide and to transmit Tsunami Bulletins.

Downloaded at Wallops Island VA/USA and forwarded to the US TWCs and Met. Offices.
Primary Functions of the Global Sea-Level Network

1. Confirm the existence or non-existence of destructive tsunami waves. Measure period and amplitude of tsunami waves.

2. Revise forecasts. Sea-level observations can be used to scale forecasts and/or adjust the source model.

3. Validate forecast models.

4. Hazard Mitigation.

5. Meteorological/Climate (storm surges, sea-level rise etc.)

6. Coastal management.
Requirements for Sea-Level Stations (For Tsunami monitoring)

1. Sample Interval
2. Transmission interval
3. Placement
4. Multiple Instruments
5. Data must be made available to the TWCs
Requirements for Sea-Level Stations

1. Sample interval

Destructive tsunamis have periods from 5 to 60 minutes or more. Therefore the sample interval should be small enough to adequately characterize shorter period tsunamis. “Local” tsunamis usually have short periods and they are the most frequent type of tsunami. Today, most sea-level stations provide sea-level readings at one minute intervals.
Why are High Frequency Sea-Level Data Transmissions needed?

More frequent transmissions allow the TWC's to confirm the existence or non-existence of a destructive tsunami more quickly. This is important because with each moment a tsunami watch/warning remains in effect, more coastline is potentially placed within a watch/warning.

=> We want to reduce the amount of coastline that is unnecessarily evacuated.
Requirements for Sea-Level Stations

2. Transmission interval
Frequent vs. Triggered transmissions

Frequent transmissions are preferred:

1. Tsunamis can happen at any time.

2. Cuts down on latency for detection.

3. Sea-level station may be destroyed before it can transmit evidence of tsunami warning.
Requirements for Sea-Level Stations

2. Transmission interval

Frequent transmissions are preferred:

4. Trigger algorithm may turn on trigger mode, but what about turning it off? Observations of decay of tsunami wave amplitudes may be used to forecast when it is safe to cancel warning.

5. Small tsunamis might not trigger.
Requirements for Sea-Level Stations

Trade-off with Sample Interval and Transmission window

Short sample intervals require more data to be transmitted. If you have too short a transmission window there may not be room for redundant or other data.
Trade-off with Sample Interval and Transmission window

There is also a trade off with GTS. GOES has 5s transmission slots. If transmitters only transmit once an hour, a single GOES Channel can service 720 transmitters. If the transmissions occur every 5 minutes, than A GOES channel can service only 72 transmitters.
3. Placement

Network Density should be highest in areas with greatest likelihood have generating tsunamigenic earthquakes. Sea-Level stations should ideally be no more than 50km apart. This will provide for quick overall detection and not miss detection of local tsunamis.

For non-seismically active areas spacing at 100km is sufficient.
3. Placement

Punta Arenas
Chile

Not Facing Open Water
Requirements for Sea-Level Stations

3. Placement

Castle Point
New Zealand

Facing Open Water
3. Placement

In the Pacific, for every hour a tsunami threat remains in affect 500km-1000km of additional coastline are placed in a warning.
Requirements for Sea-Level Stations

3. Multiple sensors

Best to have multiple sensors for purposes of redundancy.

⇒ Should be different types of instruments
Basic Types of Sea-Level Stations

• Coastal Sea-Level Stations
• DARTs
• Cabled sensors
Function
Coastal Stations (situated in shallow water)

1. Detection. The first recording of a tsunami will normally come from a coastal tide gauge (Safety in numbers). Primary means of detecting local tsunami.

2. Provide Impact information on the shore.

3. Once a tsunami is declared destructive it is the tide gauge readings that are used as a basis for cancelling the warning.

4. Failsafe in case our predictions based on DARTs are in error.
Function
DART Stations (situated in very deep water)

1. Their primary function is to help the TWCs to distinguish between tsunamis that will propagate across an ocean basin with destructive power from those that would just be measurable on tide gauges.

 => Unnecessary evacuation would cost Hawaii ~75M US$

2. Cancellation following an initial Warning/Watch bulletin.

3. Detection.
The tsunami signal is detected by a pressure sensor on the ocean floor. That signal is relayed by acoustic telemetry to the buoy. The buoy in turn transmits the signal via satellite back to the warning centers.
Coastal Station Strengths **(DART Weakness)**

1. Lots of them (400+).
2. Costs (Inexpensive).
3. Easy to maintain.
4. Primary means of detecting locally destructive Tsunami.
Strengths and Weaknesses

DART Strengths (Coastal Station Weakness)

1. Situated in deep water, far from the effects of harbor resonances and other coastal effects.

2. DART marigrams are smooth and easy to de-tide (makes them very useful for calibrating tsunami wave-height forecast models)

3. Will survive a destructive Tsunami.
DARTs vs. Coastal Stations

DARTs and Coastal Sea-Level stations are complimentary, not competing, Technologies.
GTS Sea-Level Data is structured in a rich variety of formats. There are approximately 12 or so basic formats, with a number of variations.

UHSLC format (Manzanillo, MX)
Readable ASCII (XMT 5min)

SEPA40 KWAL 050000 (WMO HEADER Origin Mdhhmm)

```
^^3541502E (Platform ID#) 186000003 :PRS 0 #1 9140 9139 ......
9139 9068 8284 8446 (Readings in mm):RAD 1 #1 6494 6483 6483 ......
:BAT 4 #5 13.3 :NAME 3541502E 38+0NN 216W (GOESW Chan 216)
```

NOS “Tsunami Expert” Station (Nawiliwili, Hawaii USA)

SXXX03 KWAL 050000
Base 64 Encoding (XMT 6min)

```
^^336015FC 186000041"P16114001@|]~[@@v0KwW1@il@WADWDM@ij5DY<U`2@Rs@T@"@Rt kTWyJBQBeBcB^BqBo 41+0NN 148W
(one minute data)
```

SOMX10 KWAL 061135

OTT Format (Zihuatanejo, Mexico)

```
0102D23E 310113501 OTA@lca{[D@@K@`@@J@`B@h@@J@`B@h@@J@`B@h@J@`A@pB@DcCCyp@Nl`CRxPGN|cCvx@CN`^CUx]
```

As you can see, GTS Sea-Level Data does not come gift wrapped and easy to use.
GTS Sea-Level Data is structured in a rich variety of formats. There are approximately 12 or so basic formats, with a number of variations.

Port Au Prince
SEHA10 KWAL 051738
49A00782 309173801 OT12 ID:HT-PTPR-01 DT:2014 11 05 17 36
:B 13.6V Data in chronological order, first 5 samples redundant

Yap
SWPA41 RJTD 051928
:PRS 1 #1 1854 1848 1844 1841 1837 1832 1827 1823 1819 1815 1811 1807
:RAD 1 #1 6666 6661 6657 6653 6649 6644 6639 6635 6631 6627 6622 6619
:ENC 1 #6 5106 5080 5056 5027 :SW1 28 #60 59 :SW2 58 #60 30 :BAT 5 #6
12.4 :NAME 065012F8 Data in reverse chronological order, last 5 samples redundant

Redundant data good to have!
For a TWC to use GTS Sea-Level Data, the TWC needs (at minimum):

1. Access to GTS Data!
 (Easier said than done in many cases)
2. A Decoder to translate Sea-Level messages into sea-level data.
3. A MetaData Database (used by the decoder).
Tide Tool

Was originally developed to give BMG (Jakarta) a nascent capability to decode GTS sea-level messages from Indian Ocean and nearby Pacific Ocean sea-level stations back in Nov. 2005.

Tide Tool has grown in sophistication and is now used as an operational sea-level processing system at PTWC and a number of other centers (Chile, Peru, Colombia etc.)
Tide Tool

Tide Tool continuously decodes sea-level messages in real-time and displays the time series using the open source, platform independent, graphical scripting language Tcl/Tk.

Tide Tool consists of three main parts:

1. Data retriever called get_data that acquires data from NOAA and the IOC webservice.
2. Decoder which reads log files of GTS sea-level messages and a sea-level station metadata base.
3. Dynamic map based clients that allow the user to select a single station or a group of stations to display and analyze.
In order to decode GTS messages, run the dynamic map clients and display the time series, the following are required:

- Computer running Tcl/Tk software with BLT extension.
- GTS Sea level messages that are continuously archived into a log file.
- Tide.tcl, get_data.tcl, client Tcl/Tk scripts. (contains decoder and creates marigram displays)
- Sea-level Station metadata.
- A link to GTS data via the country's Met Service if possible.
Tide Tool

COMPMETA metadata database

PTWC actively maintains a database (COMP_META) of all sea-level stations that transmit sea-level messages via the GTS. Tide Tool reads a *dump* of this database to understand how sea-level messages are structured for the various sea-level stations.

<table>
<thead>
<tr>
<th>Code</th>
<th>Location</th>
<th>Code</th>
<th>Code</th>
<th>Type</th>
<th>Date/Time</th>
<th>Station</th>
<th>Code</th>
<th>Code</th>
<th>Code</th>
<th>Code</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>manz</td>
<td>Manzanillo_MX</td>
<td>005</td>
<td>0000</td>
<td>19.0558</td>
<td>-104.3176</td>
<td>1 UHSLC</td>
<td>163</td>
<td>PARSE_GLOSS</td>
<td>3541502E</td>
<td>SEPA40</td>
<td>prs</td>
</tr>
<tr>
<td>manz</td>
<td>Manzanillo_MX</td>
<td>005</td>
<td>0000</td>
<td>19.0558</td>
<td>-104.3176</td>
<td>1 UHSLC</td>
<td>163</td>
<td>PARSE_GLOSS</td>
<td>3541502E</td>
<td>SEPA40</td>
<td>rad</td>
</tr>
</tbody>
</table>

The COMP_META database has ~1650 entries
get_data.tcl Script

The get_data.tcl script retrieves sea-level data from the IOC using the IOC webservice and sea-level data in the form of GTS messages via ftp from a NOAA website.

get_data will start the data retrieval process every 200s. Once started it will run continuously, and will not be affected by network outages.
Tide Tool Decoder
(Tide.tcl script)

- Reads and decodes GTS sea-level messages from the logfile.
- Constructs the main GUI which responds to mouse clicks.
- Sends and services Instructions to and from clients respectively.
- Supports multiple clients via sockets.
- Creates transmission report and determines status of stations.
- Scrollable.
Tide Tool Monitor Widget

- Can display up to three different time series:
 - Red – Actual time series
 - Black – De-tided time series
 - Blue – Predicted time series

- Two de-tiding options: permanent or on-the-fly coefficients.
- Automatically Updates
- Despike option based on three point median.
- Station location map option showing reverse travel-time contours.
- Rubber banding zoom option to expand time series.
Tide Tool Zoom Widget

- Used to measure tsunami wave arrival time, amplitude, and period with mouse clicks and record measurements in a file. Can zoom recursively.

- Can display up to three different time series:
 - Red – Actual time series
 - Black – De-tided time series
 - Blue – Predicted time series

- Two de-tiding options: permanent or on-the-fly coefficients.

- De-spike option based on three point median.

- Zoom History
Tide Tool Clients

Caribbean Client

Pacific Client

Indian Client
Pacific Client

- Send instructions to Decoder to display time series or other information.
- Responds to mouse operations to display a single station or zoom in on a region and display multiple stations.
- Scrollable.
- Indicates station status (color).

New: Client has other layers for display of sea-level observations
• You can choose to hide DARTs/BPRs or hide coastal Stations.

• Locates stations by code or NDBC number (DARTS).
Tide Tool Clients

- Double click on a station. Creates a button with a drop-down menu.
- Menu has selections to display time series for each sensor and widgets showing station info, recent GTS messages, and a geographic map of the nearby area with tsunami travel-times.

(Settlement Pt., Bahamas in this example.)
Tide Tool Clients

Tide Tool clients now have layers for showing Observations

Wave Height/Amp uses different color scales for BPRs & coastal stations

2011 Wave Heights
Tide Tool Clients

Tide Tool clients now have layers for showing Observations

2011 Wave Periods
Tide Tool Clients

- Draw a rectangle (rubber banding) to zoom in on a region and tile the screen OR....
Tide Tool Clients

.... make a “Strip Chart Widget”

You can zoom on stripchart widget too!
Other Features

Station Information Widget

Station Data For NAWI
Location: Nawiliwili, Kauai
WMO Header: SXXX03
Platform ID: 336015FC
Transmission Interval: 6mins
SENSORS:
Sensor Type: pwI Sample Rate: 1mins Unit: .001M
Sensor Type: bwl Sample Rate: 6mins Unit: .001M
DETIDE: PERM, OTF
Lat: 21.957 Long: -159.36
Other Features

Tide Tool will decode historical GTS logfiles provided the correct Metadata is available.

Tide Tool will write files containing decoded data in a simple two column format:
102.48542 0001.300
102.48611 0001.324
102.48681 0001.333
102.48750 0001.290

Tide Tool records wave measurements:
engg prs Peak to Peak 102/12 12:45 H -0.222 102/12 12:48 H 00.180 Per 00:03 Amp 00.402 2012149 15:13
For the purpose of accurate tsunami measurement it is important to remove the tide signal. Tsunamis have long enough periods that variations in sea-level can significantly affect the measurement of Tsunamis from marigrams. On the marigram, the tsunami will “ride the tide” affecting the precision of measurement.

Tide Tool uses two methods for de-tiding. One method is based on *permanent* coefficients* (long term prediction) determined (Foreman’s method) from long time series (years). The other method, “on-the-fly” (short term prediction), uses non-static coefficients determined using recent (previous few days) data (Wang, 2009).

*PTWC maintains a set of permanent coefficients and these are available for distribution with Tide Tool
Tide Tool De-Tiding

Long Term Prediction (Permanent Coefficients)
- Interactive (matlab) harmonic analysis of tide records of one year or longer (raw 3-6 min. or processed hourly data).
- Built-in de-spiking algorithm and quality control, and visual inspection.
- 67 of the Foreman’s astronomical constituents are used in the analysis.

Short Term or On-The-Fly Prediction
- Using latest data (as short 2-3 hours and up to 5 days of data).
- Same method as above except fewer constituents are used: Depending on the length of records, 1 to 10 constituents (with increasing periods) can be used.
- Limited de-spiking but without interactive quality control
- Detiding one station takes about one sec of cpu or less.

PTWC maintains a set of permanent coefficients and these are available for distribution with Tide Tool
Long Term Prediction

Harmonic analysis: Least-square fit of 67 of Foreman’s astronomical constituents to tide record of one year or longer (hourly means, or 3-6 min data). If sampling interval is < 3 min, it is resampled at 3-min or 4-6-min. In cases where quality of raw data is really poor, hourly mean data (NOS and UHSLC) are used.

Time series are despiked and smoothed if they appear noisy under visual inspection. After this formal harmonic analysis can be applied:

Least-square fit: minimization of L:

$$L = \sum_k \left\{ \left(\sum_i (A_i \cos(\omega_i \cdot T_k) + B_i \sin(\omega_i \cdot T_k)) - \text{tide}_\text{obs}(T_k) \right)^2 \right\}$$

where, T_k=time(k), A_i and B_i are harmonic coefficients, ω_i are frequencies of constituents.
Tide Tool De-Tiding

Short Term Prediction

1. Use the latest data (up to 5 days). If there are multiple sensors at a given station, the sensor with the most data is used for de-tiding (unless that data is of poor quality, in which case another sensor is used).

2. De-spiking based on the distribution of data

3. Harmonic analysis of de-spiked data: depending on the length of data, one or more constituents with periods typically less or comparable to the length of data are used.

4. Number of harmonics considered depends on length of time series. The number of harmonics that gives the best fit in a least-squares sense is used.
Both de-tiding methods have strengths and weaknesses:

Short Term Prediction

Strengths:
- Does not require long time series and can therefore be used for new stations.
- Will eliminate non-gravitational effects.

Weakness:
- Will not work well if data contains gaps or other defects.
- Coefficients need to be computed every few hours.
Both de-tiding methods have strengths and weaknesses:

Long Term Prediction

Strengths: De-tiding not affected by spikes or other defects in the data.

Weaknesses: Susceptible to non-gravitational effects.

Requires one or more years worth of data to compute coefficients that give correct phase well into the future.

=> Can’t be used for new stations
Simple to use GUI that can be invoked by hitting the TTT button on the Main GUI. A WINx cmdtool is created and the ttt_client program is executed. When it is done…
Tide Tool and Tsunami Travel Times

Click the “TTT” button on the base of the Client and the travel-time contours are superimposed. Moving the mouse over the Client will reveal the ETA.
Tide Tool and Tsunami Travel Times

Note that the zoom widgets are larger when travel time contours are displayed. On the Client zoom widgets, the contour interval is 15 minutes. Moving the mouse over the Client zoom widget will reveal the ETA and coordinates under the cursor.
Click the “Get ETAs” button on the main GUI which loads the ETAs into Tide Tool’s data structures.

Select the “Strip” option under the “SHOW” button and create the stripchart. Stations are arranged in ETA order.

The magenta line indicates the expected arrival time.

The marigrams in the stripcharts have exactly the same time scale and every 60s the time scale updates.

12 hour time scale
Future Directions

1. “On The Fly” Tide Modeling distributed with Tide Tool
2. FFT
3. Tsunami Detection
Tide Tool and Tsunami Travel Times

ETA also indicated on the monitor widgets....

Chile 2010 Tsunami Marigrams
OT 6:34 UTC, Feb 27 2010 Mw = 8.8

Earthquake

Tsunami

Earthquake

Chile 2010 Tsunami Marigrams
OT 6:34 UTC, Feb 27 2010
Tohoku Tsunami Marigrams
OT 5:46 UTC, Mar 11 2011 Mw = 9.1

Ofunato

Hanasaki

DART 21418

Acapulco

Sumatra 2012 Tsunami Marigrams
OT 8:39 UTC, Apr 11 2012 Mw = 8.6 (Aftershock 8.2)

Enganno
Two tsunamis

Meulaboah

Hanimadhoo
Two tsunamis

Earthquake
Tsunami
DART near Nicobar Islands
Reflection from Hawaii Recorded at Sitka AK.

"Tsunami Hockey"

Chile 2014 Tsunami Marigrams
OT 23:47 UTC, Apr 1 2014 Mw = 8.1

Oh no! Are we fired?

NAHHHHH!
Tohoku Tsunami Marigrams

OT 5:46 UTC, Mar 11 2011 Mw = 9.1

Ofunato

Hanasaki

DART 21418

Acapulco
Updates will be posted to the UHSLC anonymous FTP server:

ftp.soest.hawaii.edu

Login with anonymous FTP
cd ptwc

Or via the web:
ftp://ftp.soest.hawaii.edu/ptwc
Gracias!